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Abstract

As Cyber Physical Systems (CPS) are getting more complex and safety critical, Model 
Based Design (MBD), which consists of building formal models of a system in order to 
be used in verification and correct-by-construction code generation, is becoming 
a promising methodology for the development of the embedded software of such 
systems. This design paradigm significantly reduces the development cost and time while 
guaranteeing better robustness and correctness with respect to the original specifications, 
when compared with the traditional ad-hoc design methods. SIMULINK has been the 
most popular tool for embedded control design in research as well as in industry, for 
the last decades. As SIMULINK does not have formal semantics, the application of the 
model based design methodology and tools to its models is very limited. In this paper, we 
present a semantic translator that transforms discrete time SIMULINK models into SIGNAL 
programs. The choice of SIGNAL is motivated by its polychronous formalism that enhances 
synchronous programming with asynchronous concurrency, as well as, by the ability of 
its compiler of generating deterministic multi thread code. Our translation involves three 
major steps: clock inference, type inference and hierarchical top-down translation. We 
validate our prototype tool by testing it on different SIMULINK models.
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1.	Introduction

Cyber Physical Systems (CPS) are engineering systems consisting of the integration of computational control and 
physical components with continuous dynamics. As these systems are becoming more complex and their reliability 
and safety requirements are becoming more and more crucial, and harder to guarantee by the traditional design 
tools and methodologies, new design paradigms are emerging. Model Based Design is a much discussed approach 
for developing such systems. It consists of building mathematical models that capture the specifications as well as 
the critical design decisions for the system in the different stages of the development life cycle. Different tools have 
been developed to generate correct by construction code from these models, as well as for the verification of the 
system behavior in early design phases. Despite the intensive research in the Model Based Design, the Mathwork’s 
graphical environment SIMULINK[5] is still the most widely used tool for the design of embedded software. 
Although it is very convenient to use, SIMULINK does not have published and authentic formal semantics. 
Hence, its models can not be used with the Model Based Design framework. Its generated diagrams are verified 
through numerical simulations and its behavior is strongly correlated with the simulation configuration parameters. 
Although simulation based analysis is a well accepted technique in industrial practice, it becomes impossible to 
exhaustively simulate the system for verification purposes, once it gets very complex. The preservation of semantic 
is another issue, since the behavior equivalence between the simulated model and the generated code is unclear. 
Formal models, on the other hand, are less applied as they are less intuitive to use and harder to learn. In order 
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to close the gap between formal methods and industrial practices, researcher have attempted to either give formal 
semantics[8] to SIMULINK or translate it into formal models of computation[15][6][16]. In this paper, we present 
a prototype tool, SIM2SIG, that translates the discrete time blocks of SIMULINK to SIGNAL. SIGNAL is a data 
flow synchronous programming language, which was developed by IRISA[1]. Each variable (signal) within the 
SIGNAL program has its own clock, giving us the multi-rate (polychronous) formalism of SIGNAL. This timing 
model allows for streams to be computed asynchronously, which fits very easily to a multi-thread environment. 
This increases the embedded software reactivity and capabilities. Moreover, a number of formal verification tools 
such as the model checker SIGNALI[3] and the graphical developing interface SME[2] exist for Signal. These 
characteristics make SIGNAL an interesting model of computation for embedded software design. We follow the 
same translation methodology proposed in [16], for translating LUSTRE to SIMULINK, namely type and clock 
inference, and hierarchical block by block translation. The novelty in this work consists of bridging the gap between 
the ‘almost’ synchronous model of computation of SIMULINK and the polychronous model of computation of 
SIGNAL. In the past work by [16], the translation was straight forward due to the fact that the target language is 
synchronous and a global clock driven, whereas in SIGNAL language there is no global clock per se. A global clock 
may be calculated using the clock calculus if the translated SIMULINK model has the endochrony property. If 
a single global clock driver does not emerge, a polychronous model leading to multi-threaded behavior emerges. 
The other addition in this work is the use of affine clock relations between SIGNAL sub-processes, when multiple 
SIMULINK blocks have sampled inputs with varying sampling rates. The rest of the paper is organized as follows: 
Section 2 is a survey of the translation of SIMULINK to different models of computation. Section 3 is an overview 
of the SIGNAL formalism. In Sections 4 and 5, we compare SIMULINK and SIGNAL formalisms and present the 
translation goals and assumptions. Sections 6, 7 and 8 represent the three steps of the translation. Our prototype 
tool Sim2Sig is described in Section 9. In Section 10, Sim2Sig is tested on a SIMULINK model of a discretized 
DC-motor closed loop controller. We close this paper with some concluding remarks and suggested future work 

2.	Related work
A hand full of research efforts in the past have tried to give formal semantics to SIMULINK either by converting its 
models into a synchronous language [16] [9], hybrid automata[12], or I/O extended Finite Automata[6] or into a 
system of mathematical equations[8]. The main motivation for translating SIMULINK models to a formal language 
program lies in gaining access to the analysis and verification tools of the target language. In [16], discrete time 
SIMULINK was translated to LUSTRE[11] following three steps: clock inference, type inference and hierarchical 
bot-tom up block by block translation. Basic blocks like Addition or Multiplication are translated to primitive 
LUSTRE operators. Complex nodes like Subsystems are translated to Lustre nodes, which are carefully named in 
order to keep track of the original SIMULINK hierarchy. In [6], a semantic translator from SIMULINK to Hybrid 
System Interchange Format (HSIF) was introduced. HSIF is a network of hybrid automata, which can interact with 
each other using signals and shared variables. The translation was limited to continuous SIMULINK blocks and 
STATEFLOW Diagrams. The translation from SIMULINK/STATEFLOW is based on graph transformation. HA 
can model both continuous and discrete systems. However, they have not been formally standardized. Chapoutot 
et. al. [8] proposed to assign formal semantics to SIMULINK’s simulation engine, solver and a subset of blocks that 
span discrete and continuous operations. The dynamical SIMULINK system is represented as a state space with 
continuous time, as well as discrete time state functions to represent the fact that SIMULINK models are hybrid 
systems. The simulation goal consists of finding the solution for the set of state space equations. This approach 
was validated by comparing the outputs of the SIMULINK simulator and the equation-based one for different 
case studies. Although the system of equations approach is able to cover both discrete and continuous blocks, this 
approach lacks tools for the equation grammar verification and simulation. In order to take advantage of the high 
computing power resulting from multi-core architectures, multi threading is very desired. Due to its multi-rate 
formalism, the polychronous language SIGNAL, leads naturally to multi-threaded code synthesis. This justifies our 
motivation for choosing SIGNAL as a target language. 

3.	The polychronous language signal
SIGNAL is a declarative multi-rate synchronous language. It satisfies the synchrony hypothesis, which assumes 
that the computation and communication time are instantaneous. While the synchronous languages have a totally 
ordered model of logical time, SIGNAL's model of logical time is partially ordered. The semantics of the language 
does not assume an a priori existence of a reference clock. Each variable (signal) is characterized by its own clock. 
In the following section, we introduce some preliminaries notions related to SIGNAL.
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3.1.	 Preliminaries

The basic entity in a polychronous language is an event.

Definition 3.1. (Event). An event is an occurrence of a new value. We denote the set of all events in a system by Ξ. 
The relative occurrences of events can then be represented using the following binary relations over Ξ:

Definition 3.2. (Precedence, Preorder, Equivalence). Let < be a precedence relation between events in Ξ. It is 
defined such that ∀a, b ∈ Ξ, a < b if and only if a occurs before b. The relation < defines a partial order on Ξ such 
that ∀a, b ∈ Ξ, a < b if and only if a occurs before b or a, b occur logically simultaneously, or their order does not 
matter. Finally the equivalence relation ∼, is defined on Ξ such that a ∼ b = a < b ∧ b < a, meaning that a and b 
are equivalent only if they occur simultaneously or their order does not matter. Thus ∼ represents synchronicity of 
events. 
An instant can also be seen as a maximal set of events that occur in reaction to any one or more events. Formally: 

Definition 3.3. (Logical Instant). The set of all instants is denoted by Υ. Each instant in Υ can be seen as an 
equivalence partition obtained by taking the quotient of Ξ with respect to ∼ such that Υ = Ξ / ∼. For each set S ∈ Υ, 
all events in S will have the property ∀a, b ∈ S, a ∼ b, and ∀a, b, (a ∈ S1 ^ b ∈ S2 ^ S1 ≠ S2 ^ S1, S2 ∈ Υ → a !∼ b.
Each instant contains events on signals. If a signal has no event in an instant then it is considered absent. We denote 
a specific value of a signal x by function x(t) where t ∈ N and t represents the tth instant in the totally ordered set 
of instants where signal x is different from ⊥. 

Definition 3.4. (Epoch, Clock). The epoch, σ(x), of a signal x is the maximum set of instants in Υ where for each 
instant in σ(x), x takes a value from T. The clock of the signal x is a characteristic function that tells whether or 
not an event in x is absent or is in the set T . Clock is a function of type Υ → [true, false] such that for a signal x it 
returns another signal ˆx defined by ˆx (t)= true if x(t) ∈ T . 
Note that not all inputs and outputs are present or computed during every instant in Υ which means that not 
all signals have the same epoch or clock. This gives the multi-clocked or polychronous behavior. Using the above 
definitions and characteristics, three possible relationships can be drawn between any two clocks x and y: equivalent, 
sub-clocked, or unrelated. If the clocks of x and y are true for the exactly the same set of instants, ˆx = yˆ, then it is 
said that these two clocks are equivalent, and the corresponding signals are also synchronous. If the clock of a signal 
x is true for a subset of instants where the clock of y is true then it is said that x is a sub-clock of y. If the clocks of 
x and y are not equivalent or subset or superset of the other then the clocks are said to be unrelated [14].

3.2.	 The SIGNAL Formalism

The primitive SIGNAL operators are Function, Delay, Under-sampling and Priority Merging (see Figure 1). 

1.	 Function Operator: performs user defined operations on a set of signals x1, ... xn that must be present 
simultaneously and produces an output y at the same instant. 

	 Operation: y := f(x1,x2,. . . xn)	 (1)
	 Clock Relation: ˆy =ˆx1 = ˆx2 = . . .ˆxn

2.	 Delay Operator: sends a previous value of the input to the output with an initial value k as the first 
output. The original and delayed signals are synchronous. 

	 Operation: y :=x $ init k	 (2)
	 Clock Relation: ˆy = ˆx

3.	 Under-Sampling Operator: down-samples an input signal x based on the true occurrence of another 
input signal z. The output signal clock is thus equal to the intersection of the clocks of x and z=true, 
noted [z]. 

	 Operation: y := x when z	 (3)
	 Clock Relation: ˆy =ˆx * [z]

4.	 Priority Merging Operator: merges two signals x and z into one signal y. At any logical instant, if x 
is present, then y will have the value present on x, else y will have the value present on z. If neither x 
nor z are present, y is absent.

	 Operation: y := x default z 	 (4)
	 Clock Relation: ˆy = ˆx + ˆz
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Figure 1. Primitive SIGNAL operations [7].

3.3.	 Advanced SIGNAL Constructs 

Clock relations are not only inferred from the SIGNAL statement, they can be given explicitly [10]: The equation, 
clk:=when b, implies that clk represents the set of instants at which b holds true. The equation, clkˆ = s, implies 
that clk is the clock of s. The equation, s1ˆ = s2, specifies that the signals s1 and s2 are synchronous. Another useful 
construct is Cell: y := x cell z init k. In this case, the output signal contains the values of the first input signal x for 
all its instants and retains the previous value of x during the true instances of the second boolean input k. The clock 
of y is the union of the clocks of x and z. An example of the Cell operator is shown below: 

x:  ⊥  v2  v3 ⊥ 
z:   t   t    ⊥  f

y:  k v2   v3 v3 

3.4.	 SIGNAL Processes 

A SIGNAL program is a process. The parallel composition of two processes P and Q, noted P|Q is the union of 
equation systems defined by both processes. P and Q communicate via their common signals. The template of a 
SIGNAL process is: 
								        Process MODEL ={ %parameters%}
												            (? %inputs%;! %outputs% ;)
						        	  (| %body of the process% |)
								        where
							           %local declarations%
								        end ;
The input-output ports are declared using the symbol ? and ! respectively. Each input or output is associated with 
its type (event, integer, boolean, real). Each SIGNAL statement consists of the four primitive operators. 
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4.	Comparing simulink and signal 
Both SIMULINK and SIGNAL are data-flow languages. They both manipulate signals. In SIMULINK, signals 
are the wires that connect the blocks in a model. In SIGNAL, a signal is the program variable corresponding to a 
stream. A system performs a specified operation on an input signal and produces an output signal. The systems in 
SIMULINK are library blocks that could be simple (e.g., Adder, Product) or composed (subsystems). In SIGNAL, 
systems are built-in operators (e.g., when, default), as well as user defined ones, called processes. Another similarity 
consists of the hierarchical composition of systems. In SIMULINK, the subsystems are drawn graphically within 
their parent system, to form a tree structure. In SIGNAL, as well, a parent process can contain multiple subprocesses. 
Despite of these similarities, SIMULINK and SIGNAL are different in several major ways: First, SIGNAL has a 
well defined formal semantic, whereas SIMULINK’s behavior strongly depends on the choice of the simulation 
parameters. For example, some models are accepted if we allow to handle rate change automatically, others are 
rejected if the automatic rate change opting is unchecked. Second, SIGNAL has a discrete time semantics, whereas 
SIMULINK has a continuous one. Even the blocks belonging to the discrete library produce piecewise constant 
continuous-time signals. Third, SIGNAL is a strongly typed language that explicitly specifies the type of each flow. 
However, SIMULINK does not require the type specification for each block. This can be done, using, for instance, 
a Data Type Converter Block (see Section 6). Finally, SIGNAL is a multi-rate language, which means that two 
variables can be of different rates and can remain unrelated throughout the program. However, SIMULINK, both 
in sample-driven and event-driven cases, has a global clock, namely the simulation clock, that is synchronous with 
every clock in the model (see Section 7).

5.	Translation goals and assumptions 
The problem of semantic translation can be formulated as follows: Given a SIMULINK model of a dynamic 
system, compute a flow equivalent dynamic system model in SIGNAL which produces the same execution traces 
as the simulation output in SIMULINK. Our tool rejects the models with typing or timing errors flagged by 
SIMULINK. We limit our translation to the discrete time part of SIMULINK. This is justified by the fact that only 
the controller in safety critical systems is implemented on the computer, hence it must be designed in discrete time. 
The list of supported SIMULINK blocks is shown in Figure 2. As SIMULINK semantics depend on the simulation 
method, we limit our translation to one method. We chose the solver to be discrete and fixed step, the simulation 
mode to be auto and to automatically handle rate transition for data transfer deterministically. We also assume that 
the boolean logic signals flag is on. We developed our translation method using MATLAB 7.12.01 (R2011a) and 
SIMULINK block Library V7.7. 

6.	Type inference
6.1.	 Types in SIMULINK

Unlike in SIGNAL, variable types are not explicitly declared in SIMULINK. However, implicitly, SIMULINK 
has some typing rules. The simulation engine rejects some models because of typing errors. The basic types for 
SIMULINK are: boolean, double, single, int8, uint8, int16, uint16, int32, uint32. The main SIMULINK typing 
rules are: 
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Figure 2. Supported SIMULINK Blocks.

•• By default, all signals are of type double, except when a block requires a defined type. For example, 
the inputs of Logical Operator blocks must be of type boolean. 

•• The user can explicitly set the type of a signal to another type (e.g., by a Data Type Converter Block) 
•• An error type occurs when incompatible types are fed in one block, for example, when a boolean 

and an integer are fed to the same Adder block. The typing rules for each block are given in Table 1. 
We define TNum = {double, single, int8, uint8, int16, uint16, int32, uint32}, and TBool ={boolean}. 
Let {α, φ}∈ TNum, θ ∈ TBool and { γ, β } ∈ {TBool,TNum}

SIMULINK Block Typing Rule 
Constant α 

Adder α • . . . • α → α 
Gain α → α 

Relational Operator α • α → θ 
Logical Operator θ • . . . • θ → θ 

Discrete Transfer Function α → α 
Unit Delay, Inport, Outport γ → γ 

Data Type Converter γ → β 
Switch α • φ • α → α 

Table 1. Typing Rules for Some SIMULINK blocks.

6.2.	 Types In Signal

SIGNAL is a strongly typed language: variables have a declared type and operations have precise type signatures. 
The basic types for SIGNAL are integer, real and boolean. Type casting can be performed as in C. For example, an 
integer x is converted to a real y as follows: y = integer(x). The array type allows grouping synchronous elements 
of the same type. An array of size N with elements of type element_type is defined as follows: [inp1, ..., inpN ] 
element_type. 
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6.3.	 Type inference

The goal of this step consists of inferring the type of each signal in SIMULINK, so that its corresponding type in 
SIGNAL can be used in the translation. For the type inference, we use a fix-point algorithm on the lattice shown in 
Figure 3. ⊥ means undefined type and error means typing error. We call xT ∈ TSim the type variable corresponding 
to the variable x, with TSim = {TNum,TBool}. We define a monotonic function sup: (TSim)n → TSim in the type lattice, 
where n is the number of blocks in the SIMULINK model. Sup(xT ,yT )=zT , denotes that zT is a least common 
upper bound of xT and yT . The fixed point is calculated on the set of equqtions shown in Table 2.

Figure 3. The Type Lattice.

SIMULINK Equation Type Equation 

y = Adder(x1, . . . , xk) yT = xT
1 = · · · = xT

k =  Sup (double, yT , xT
1 , . . . , x

T
k ) 

y = Constant
α
 yT =if yT <= α then α else error 

y = DataT ypeConv
α
(x) yT =if yT <= α then α else error

y = UnitDelay(x) xT = yT

y = RelOp(x1, x2) xT
1= xT

2=Sup (double, xT
1, x

T
2), y

T =bool 

y = LogOp(x1, . . . , xk) xT
1= xT

2= xT
1 = . . . =  xT

k = yT =bool 

y = Switch(x1, x2, x3) xT
1 = xT

1 = yT =Sup (xT
1, x

T
3, y

T) 

Table 2. Type Inference Equations [16].

7.	CLOCK INFERENCE
7.1.	 Time in SIMULINK

SIMULINK has two different timing mechanisms, namely samples and triggers.

7.1.1.	 Sample Time
The discrete time SIMULINK signals are piecewise-constant continuous-time signals. Blocks in SIMULINK can 
be assigned sample times, as configuration parameters. A sample time equal to 2, means that the block should 
be evaluated every two ticks of the global simulation clock. The sample time corresponds then to the period π of 
the block output signals. Some blocks (e.g, Pulse Generator) can also be characterized by initial phase θ, which is 
propagated to the neighboring blocks. Hence, in general, every block is characterized by a period π and a phase θ. It 
is evaluated every k π + θ (k=0, …, n). By default, blocks have their sample time set to -1, which corresponds to an 
inherited (from the inputs or the parent subsystem) value. We assume that the configuration option, Automatically 
handle rate transition for deterministic data transfer, is chosen. SIMULINK has some timing rules, if violated, the 
model is rejected:
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•• The inputs of a simple block B must have sample times that are multiplier or divisor of the block 
sample time: (πInp1…n = k πB) OR πInp1…n = 1/k * πB), with k = 0, …, n

•• Enabled and Triggered Subsystems' inputs should have the same sample times: πInp1= … = πInpn.

7.1.2.	 Triggered Subsystem
The second timing mechanism of SIMULINK is the triggers. Only subsystems can be triggered by a signal Trig. 
The triggered subsystem is evaluated if Trig has a rising or falling transition. The sample time of the blocks inside a 
triggered subsystem are all equal to the period T of the trigger signal. The example below shows the execution of a 
triggered subsystem (rising trigger). We assume that the triggered subsystem has no sub-blocks inside.

	 Trigger:	 0	 1	 1	 1	 0	 1	 0	 1	 1
	 Input:	 0	 1	 2	 3	 4	 5	 6	 7	 8
	 Output:		  1				    5		  7

7.1.3.	 Enabled Subsystem
The timing mechanism of the enabled subsystem is ambiguous [16]. It cannot be understood from a set 
of experiments. For the sake of the translation, we assume that the enabled subsystems have the same timing 
mechanisms as the triggered ones. The only difference lies in evaluating the block, if the Enable signal is equal to 1. 
The example below shows the execution flow of an enabled subsystem. We assume that the subsystem contains no 
sub-blocks. 

	 Enable:	 0	 1	 1	 1	 0	 1	 0	 1	 1
	 Input:	 0	 1	 2	 3	 4	 5	 6	 7	 8
	 Output:		  1	 2	 3		  5		  7	 8

7.2.	 Time in Signal

SIGNAL has a partially ordered logical time. This means that the duration is abstracted to a point, namely the 
logical instant, and the time instants are partially ordered. Simi-lar to the synchronous languages, SIGNAL also 
assumes the synchrony hypothesis. However, SIGNAL does not have a global clock, as a reference for sampling 
all the signals at each tick. Each SIGNAL flow x is characterized by a boolean flow bx, called the clock of x. If x is 
present at instant i, bx(i) is equal to true, otherwise it is equal to false. The signal clocks can be independent until 
the end of the program. In case of synchronization requirements, extra timing constraints can be added. Epoch 
analysis is performed, in order to determine whether a sequential program can be synthesized from the SIGNAL 
specifications. In other words, it determines whether a Master Trigger can be found. If not, exogenous constrains 
are required from the user to form a Master Trigger [13]. We refer the reader to [4] for more detailed discussion on 
SIGNAL timing model.

7.3.	 Clock Inference

The blocks inside a triggered or enabled subsystem must have a sampling period and phase equal to the ones of 
the enclosing Triggered/Enabled subsystem. Otherwise, we consider two cases. In a first case, the sample time of a 
given block bi is defined (Periodes[i] != -1). If it is a multiplier or divisor of the input signals’periods, it is kept. If, 
however, the sample time of the block is undefined (Periodes[i] == -1), it is inferred as the greatest common divisor 
of the input signals’ periods [16] (See Formulas 5, 6 and 7). 

	 (πB ,θB ) = GCDrule ((πi, θi) i=1...n)	 (5)
	                           gcd(π1,…, πn)                               if θ1 = … = θn
                                                  πB =  
	                    gcd(π1,…, πn, θ1 ,… , θn)             otherwise	 (6)

	                            θ1 mod π                                    if θ1 = … = θn
                                                  θB =  			     	
	                      0                                                otherwise	 (7)

For Example:
GCDrule ((12,4), (12,0)) = (4,0), GCDrule ((12,4), (4,4)) = (4,4),
GCDrule ((12,4), (12,3)) = (1,0), GCDrule ((4,0), (3,0)) = (1,0).
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8.	Translation
8.1.	 Type Translation

Once the type Inference step is completed, the obtained SIMULINK types are mapped to their corresponding 
SIGNAL ones, as it is shown in Table 3.

SIMULINK Type SIGNAL Type 
bool Boolean 

int8, uint8, int16, uint16, int32 or uint32 Integer 
⊥, double, single Real

 
Table 3.Type Translation.

8.2.	 Clock Translation

Once all the sample times are inferred, we use these information to reproduce the same traces of the SIMULINKmodel 
simulation. The blocks inside a triggered or enabled subsystems are assigned the periods and phases of the trigger/
enable signal. For the rest of the blocks, according to the ratio between the periods of the every two directly 
connected blocks A and B, we distinguish three cases:
•	 Case 1 : α = PeriodeA / PeriodeB  = 1
	 The output signal clock of A is equal to the output signal clock of B: 
	 outputA ˆ = inputB ˆ = outputB 
•	 Case 2 : α = PeriodeA / PeriodeB  > 1
	 Undersampling should be performed in B. The clock relation between the input and output signals of B is: ˆ 

outputB = α ˆ inputB + β. β here is the phase difference between outputB and inputB: β = PhaseB - PhaseA. In 
order to implement the discussed affine clock relation, we consider a counter variable cnt, that has the same 
clock as the input signal outputA. Hence, staring from the initial phase, cnt is incremented every time a new 
input is read. When cnt reaches a multiplier of α, the function f performed by the block is evaluated and the 
output is produced. The following SIGNAL code illustrates the above explained algorithm for a Unit Delay 
block:

	 | cnt := (cnt +1) $ init (PHASEB - PHASEA); 
	 | cnt2 := cnt modulo (PERIODEA / PERIODEB); 
	 | cnt ˆ = inputB ;
	 | tmp := inputB $ init 1; 
	 | outputB := tmp when (cnt2=0); 
	 The flow of the output signal outputB for the Unit Delay block, with α=2 and β=0 and initial value v0, is: 
		  OutputA	 v1	 v2	 v3	 v4	 v5	 v6

		  Cnt	 0	 1	 2	 3	 4	 5
		  Cnt2	 0	 1	 0	 1	 0	 1
		  tmp	 v0	 v1	 v2	 v3	 v4	 v5   
		  OutputB	 v0	 .	 v2	 .	 v4	 .  

•	 Case 3 : 1/α = PeriodeA / PeriodeB  < 1
	 Oversampling should be performed in B. Similar to the Undersampling case, the clock relation between the 

input and output signals of B is: ˆ outputB = α ˆ inputB + β. β here is the phase difference between outputB 
and inputB: 

	 β = PhaseB - PhaseA. In order to implement the discussed affine clock relation, we consider a counter variable 
cnt, that has the same clock as the output signal outputB . Hence, staring from the initial phase, cnt is 
incremented. When cnt reaches a multiplier of α, a new input is read, the function f performed by the block 
is evaluated and a new output is produced. Otherwise, the old output is emitted. The following SIGNAL 
code illustrates the oversampling algorithm in case of a Unit Delay block: 
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	 | cnt := (cnt+1) $ init (PHASEB - PHASEA);
	 | cnt2 := cnt modulo (PERIODEB/PERIODEA);
	 | cnt ^= outputB;
	 | inputB ^= when (cnt2=0);
	 | tmp := input $ 1 init 1;
	 | outputB := tmp cell ^ outputB;
	 The flow of the output signal OutputB for the Unit Delay block, with α =2 and β =0 is shown below:
		  OutputA	 v1	 .	 v2	 .	 v3	 .	 v4	 .	 v5

		  Cnt	 0	 1	 2	 3	 4	 5	 6	 7	 8
		  Cnt2	 0	 1	 0	 1	 0	 1	 0	 1	 0
		  tmp	 v0	 .	 v1	 .	 v2	 .	 v3	 .	 v4  
		  OutputB	 v0	 v0	 v1	 v1	 v2	 v2	 v3	 v3	 v4

8.3 Basic SIMULINK Blocks translation

In this section, we illustrate how the main basic blocks are translated. The remaining blocks are translated similarly.
•	 Sum Block: performs addition or substraction on its inputs. The operation of the block is specified by the list 

of signs parameters ((+) and (-)), indicating the operations to be performed on the inputs: 
	 | out := inp1 + inp2 -inp3 
•	 Gain Block: performs a multiplication of the input with a constant: 
	 | out := inp * GAIN
•	 Logical Operator Block: performs a boolean operation Op ∈{AND,OR,NOT} on its inputs: 
	 | out := inp1 Op Inp2 
•	 Unit Delay and Integer Delay Block: The output of the Unit Delay and Integer Delay blocks is a delayed 

version of the input by NB DELAY instants. NB DELAY is equal to 1, in case of a Unit Delay Block. INIT 
VALUE is the initial value of the output: 

	 |  out := inp$ NB DELAY init INIT VALUE
•	 Data Type Conversion Block: is translated into a Type Casting operation. The following code translates a real 

input into an integer output: 
	 | out := (integer) inp
•	 Zero-Order Hold Block: If the sample time of the Zero-Order Hold Block is set to -1, it is equivalent to the 

identity function: 
	 | out := inp. Otherwise, the clock translation, as explained in Section 8.2 is performed.
•	 Constant Block: The Constant Block value is added in SIGNAL to the list of the parent process parameters.
•	 Saturation Block: truncates its inputs according to an upper limit (LIMUP ) and a lower limit (LIMLOW) 

bounds given by the user:
	 | out := (LIMUP when (inp > LIMUP)) default (LIMLOW (inp < LIMLOW))) default input
•	 Switch Block: The Switch Block has three inputs. It compares its middle input inp2 to a threshold value. If it 

is greater than the THRES, the first input is passed to the output, otherwise the third input is emitted as an 
output:

	 | out := (inp1 when (inp2 > THRES)) default (inp3 when (inp2 < THRES))
•	 Pulse Generator: The Pulse Generator with a period= 4, a phase= 2, an amplitude= AMP and a pulse width=2 

is translated into the following SIGNAL code:
		  process PulseGenerator =  { real AMP} 
		  (? ! real out;) 
		  (| dpg1:= dpg2 $1 init AMP
		  | dpg2 := dpg3 $1 init AMP
			   | dpg3 := dpg4 $1 init real(0)
		  | dpg4 := dpg5 $1 init real(0)
		  | pha1 := dpg1 $1 init real(0)
		  | pha2 := pha1 $1 init real(0)
		  | out := pha2 |)
	 where
		  real dpg1, dpg2, dpg3, dpg4, pha1, pha2;
	 end;
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•	 Discrete Filter and Discrete Transfer Function: The Discrete Filter/Discrete Transfer Function’s parameters 
are the nominator coefficients number values COEFFN , the denominator coefficients values COEFFD and 
the initial state value INIT VAL. The transfer function 1/(1+0.5z-1) is translated into the following SIGNAL 
code:

	 | output := (input * COEFFN[0] + tmp0)/COEFFD[0]
	 | tmp0   :=(- COEFFD[1] * output)$1 init INIT_VAL
•	 Mux: The Mux block combines its inputs into a single vector output. It is generally used to merge the output 

of different blocks. The SIGNAL code for a Multiplexer with three inputs inp1, inp2 and inp3 is: 
	 |out := [inp1, inp2, inp3]
•	 Combinatorial Logic: implements a truth table. It reads a boolean number, and outputs the row in the 

boolean table corresponding to the read input.
	 Process CombinatorialLogic =
		  { integer N, M, K; [N] boolean TruthTab; }  
		  (? [M] boolean inp; ! [K] boolean out );
		  (| array i to (M-1) of
			   (| Row:= Row[?]+ ((1 when inp[i])
			      default (0 when not inp[i])) |)
			   with
			   (| Row:=0 |)
			   end
		  | index0:= Row*K-K..Row*K
		  | output := TruthTab[index0] |)
•	 FromWorkspace/ToWorkspace: are translated respectively into an input and an output of the SIGNAL 

process.
•	 Trigger: takes a real/integer flow and transforms it into a boolean flow. We distinguish between Rising Trigger, 

Falling Trigger or Either. The Rising Trigger gets the value true when an input transition from a negative 
number to a positive one happens. The Falling Trigger is true when an input transition from a positive to a 
negative value occurs. The Either trigger is true, if either a rising or a falling transition happens. The following 
example, illustrates the trigger mechanism:

		  Input	 -1	 0	 1	 2	 -2	 3	 1	 4	 -1
		  Rising Trigger	 f	 t	 f	 f	 f	 t	 f	 f	 f
		  Falling Trigger		 f    f    f   f     t    f    f   f    t
		  Either Trigger		 f    t    f    f    t     t    f   f	 t

	 The following SIGNAL code generates a Rising Trigger flow. The not_before variable ensures that the trigger 
is only produced, if no one happened in the previous time step. The

	 Falling Trigger is defined similarly:
	 | RiseTriggerold := Trig $ init false
	 | Trig := neg_to_nonneg OR (nonpos_to_pos and not_before)
	 | neg_to_nonneg:= ((inpold < 0) AND (inp >= 0))
	 | nonpos to pos := ((inpold <= 0) AND (inp > 0))
	 | not_before := NOT (RiseTriggerold)
•	 Enable: Similar to the Trigger, the Enable block transforms a real/integer input flow to a boolean flow en. en 

has the value true, when the input inp is positive:
	 |  en:=(true when (inp > 0)) default ( false when (inp <= 0))).

8.4.	 Subsystems translation 

As the model increases in size, its complexity can be reduced by grouping the functionality related blocks together 
into subsystems. A subsystem can be executed conditionally or unconditionally. A conditionally executed subsystem 
may or may not execute depending on a control signal. We distinguish between triggered and enabled subsystems. 

8.4.1. Plain Subsystems Translation
A SIMULINK diagram can be constructed in SIGNAL by recursively translating subsystems into processes and 
the enclosed atomic blocks into subprocesses. The first step in the top down translation is the blocks parameter list 
generation, then the outputs and inputs definition. After that, the subprocesses in the first hierarchy level are called. 
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Additional equations for the block connections are generated. In the Where part, the local variables are defined. 
The subprocesses body is also implemented. For every block, type and clock translation are performed as described 
is Section 8.1 and Section 8.2.
		  Process P= {integer N;}
			   (? integer inp; boolean b; ! integer out;)
 			   (| tmp := Q{N}(inp) 
			   | out := tmp when b|) 
		  Where
			   Integer tmp ;
			   Process Q={ integer M; }
			    (? integer s1; ! integer s2;)
			   (| s2:= s1 * M |);

Figure 4. Plain Subsystem Translation.

8.4.2 Triggered Subsystems Translation
The Triggered Subsystem is a subsystem with a control input, namely the trigger input. The subsystem is executed, 
each time a trigger event occurs. If no trigger happens, the output is either reset or it holds its old value. Figure 5 
shows a Triggered Subsystem enclosing a Unit Delay block. 

Figure 5. Triggered Subsystems Translation.

Below is the corresponding SIGNAL code. The parent process Sim2Sig calls the subprocesses Trigger and SubSys. 
Trigger generates the rising trigger SubSystrig from the in-put Y. SubSys is the Triggered Subsystem. It is only executed 
when SubSystrig is true, otherwise it emits its old output, each time a new input with no trigger event arrives.

		  Process Sim2Sig = {integer NB_D, INIT_V; }
			   (? integer X, Y; ! integer Z;) 
			   (| SubSystrig := Trigger(Y) 
			   | Z := SubSys { NB_D, INIT_V } (X when SubSystrig)cell ˆ X | )
		   Where 
			   boolean SubSystrig; 
			   Process Trigger = (As defined in Section 8.3)
			   Process SubSys= { integer NB_D, INIT_V; }
				    (? integer in; ! integer out;)
				    (| UnitDelayout := UnitDelay {NB_D, INIT_V} (UnitDelayin)
				    | UnitDelayin := in
				    | out := UnitDelayout |)
			   Where
				    integer UnitDelayin, UnitDelayout;
				    Process UnitDelay= (As defined in Section 8.3)
			   End ;
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8.4.3.	 Enabled Subsystems Translation
The same translation method discussed for the case of a triggered subsystem, applies for the enabled one. The only 
difference is replacing the Trigger block with an Enable one.

9.	Implementation: the tool SIM2SIG

SIMULINK Model
.XML

SIGNAL Files
.SIG
.PAR

Error

Type Inference Translation

Clock Inference

XML File Parsing

Figure 6. Translation Framework.

Our prototype tool SIM2SIG is written in C++. It architecture is shown in Figure 6. It reads an XML file generated 
by SIMULINK, parses it and builds a data structure representing the original SIMULINK model. After that, type 
inference (Section 6), clock inference (Section 7) and the translation (Section 8) steps are performed. The tool 
outputs a SIG file containing the SIGNAL program and a PAR file with the parameters, as well as error messages.

10.	 Case study: discretized dc-motor closed loop controller 
In this section, we use our tool to translate into SIGNAL a SIMULINK model consisting of a system consisting 
of an input sampler and a discretized DC-motor in a loop with a PID controller. The electrical and mechanical 
dynamics of the three-level DC-motor are represented by the following equations: 

	 Vin − R · i − Ke · θ[n +1] = L · i [n + 1]	 (8)
	 Kt · i − b · θ [n +1] = J · θ[n + 2]	 (9)

R stands for the resistance, b for the damping factor L−1 is the inductance, J−1 is the inertia, i is the current and 
θ is the angular frequency. Equation 8 is implemented in the subsystem S1. Equation 9 is implemented in the 
subsystem S2.
The system inputs are sampled by the Input sampling block. The Adder Block in the PID subsystem down-samples 
the voltage with a factor of two. The Rate Adjustment block has a sampling rate equal to 1. Hence, the DC-
Motor output is over-sampled with a factor of two. This case study shows then how the hierarchical translation 
is performed, as well as how different SIMULINK Timing mechanisms are translated into SIGNAL. The flow 
equivalence is validated by comparing the traces generated from the SIMULINK model and its corresponding 
SIGNAL translation. 
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Figure 7. Case Study. Discretized DC-Motor Closed Loop Controller.

11. Conclusion
In this paper, we developed a tool that translates a discrete time subset of SIMULINK into the polychronous 
for-mal language SIGNAL. The motivation behind this work, lies in the lack of formal sematics of the most 
popular embedded software design tool, SIMULINK. Hence, the correctness of the generated models can not be 
completely and efficiently verified. On the other hand, formal languages, are less popular as they are harder to learn. 
They have, however, clear and precise semantics, that allow the application of powerful design methodologies. 
The choice of SIGNAL as a target language for this work, is justified by its multirate nature that allows for signal 
streams to be computed asynchronously, which fits very easily to a multi-threaded environment. The novelty 
in this work consists of bridging the gap between the synchronous and polychronous models of computation, 
through constructing affine clock relations between every block’s inputs and outputs. This allows the generation of 
flow equivalent SIGNAL programs from the SIMULINK models. The translation follows three major steps: type 
inference, clock inference and hierarchical topdown translation. The SIGNAL program is generated by recursively 
translating the SIMULINK blocks. Subsystems are translated into SIGNAL processes and their enclosing blocks 
are translated into subprocesses. Our tool is tested on a discretized DC-Motor controller. Apart from SIGNAL 
code generation, our tool can be used for checking typing and timing rules of the SIMULINK models. Models 
that are rejected in SIMULINK are also rejected by our tool. The main drawback of this tool is its dependency on 
SIMULINK semantics, which keeps changing from one version to another. Besides, this tool is still incomplete, as 
it does not translate all the SIMULINK blocks. In fact, the behavior of many blocks is ambiguous, despite of the 
multiple experiments performed to understand it (ex. Enabled SubSystem). In the future, this work can be extended 
in different ways. One research direction would be to translate STATEFLOW to SIGNAL, since, SIMULINK 
and STATEFLOW are complementary tools, that are used together in many applications. Another interesting 
direction, would be to compare the concurrency of the SIGNAL produced C code, with the one generated from 
LUSTRE and the one provided by the SIMULINK code generator. This would prove the advantage of choosing 
SIGNAL as a target language instead of other synchronous languages. Formally proving the flow equivalence 
between SIMULINK and SIGNAL is also within the scope of our future work. Finally, the scalability of the tool 
can be further tested by applying the translation tool to more complicated SIMULINK models from the industry. 
In this case, the fault coverage obtained from using SIGNAL verification tools over the SIMULINK ones can be 
compared. 
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